Real-Time Hand Gesture Detection and Recognition Using Boosted Classifiers and Active Learning

نویسندگان

  • Hardy Francke
  • Javier Ruiz-del-Solar
  • Rodrigo Verschae
چکیده

In this article a robust and real-time hand gesture detection and recognition system for dynamic environments is proposed. The system is based on the use of boosted classifiers for the detection of hands and the recognition of gestures, together with the use of skin segmentation and hand tracking procedures. The main novelty of the proposed approach is the use of innovative training techniques active learning and bootstrap -, which allow obtaining a much better performance than similar boosting-based systems, in terms of detection rate, number of false positives and processing time. In addition, the robustness of the system is increased due to the use of an adaptive skin model, a color-based hand tracking, and a multi-gesture classification tree. The system performance is validated in real video sequences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features

This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...

متن کامل

Real-Time Hand Gesture Recognition for Human Robot Interaction

In this article a hand gesture recognition system that allows interacting with a service robot, in dynamic environments and in real-time, is proposed. The system detects hands and static gestures using cascade of boosted classifiers, and recognize dynamic gestures by computing temporal statistics of the hand’s positions and velocities, and classifying these features using a Bayes classifier. Th...

متن کامل

Applying mean shift and motion detection approaches to hand tracking in sign language

Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...

متن کامل

Hand Gesture Recognition for Human Computer Interaction: A Comparative Study of Different Image Features

Hand gesture recognition for human computer interaction, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture ...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007